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ABSTRACT

In this paper a novel ion current based estimation
scheme for the in-cylinder pressure peak position (PPP)
is proposed. A reliable estimate is constructed by
appropriate signal processing based on local curvatures
of the post flame phase of the ion current. The peak-
finding algorithm is simple and easy to implement in an
engine control unit for feedback control of the
combustion phasing. Results on real data, sampled
onboard a commercial car are presented. Further, the
performance of the algorithm is compared to two state of
the art algorithms for PPP estimation from the ion
current. The comparison shows that the algorithm
presented in this paper outperforms its competitors1.

INTRODUCTION

Production systems of today use feedforward control
algorithms to compromise between fuel economy,
engine performance and emission levels. These are
implemented as static look up tables, based on sensing
of parameters such as: RPM, manifold air pressure,
throttle angle, coolant temperature and atmospheric
pressure. This control strategy is sensitive to e.g.
engine diversities, engine aging, fuel additives and
environmental disturbances like humidity. Thus, optimal
performance can not be guaranteed.

Regarding fuel consumption and efficiency of the spark
ignited engine; a close relationship with the in-cylinder
pressure peak position (PPP) has earlier been reported
[1]. Moreover, feedback control using an intrusive
pressure sensor to assess PPP as feedback variable
has previously been successfully demonstrated [1, 2].
However, the drawbacks of in-cylinder pressure sensing,
i.e. cavity forming due to the intrusive measurement
technique, a significant baseline drift and high cost, are
reasons why pressure sensors are not used in mass
production.

                                                     
1 To the authors’ knowledge, there is only two ion current
based algorithms described in the literature.

The ionization of the combustion gas versus the crank
angle, referred to as the ion current signal, is rich on
information about the combustion. In particular, the end
phase of the signal, corresponding to thermal ionization,
can be related to the in-cylinder pressure. Various
schemes have therefore been suggested for estimation
of the in-cylinder pressure peak position (PPP) from the
ion current signal [3, 4, 5]. These are either based on
curve-fitting or pattern-matching techniques. Although
yielding good results, they all suffer from signal
alterations related to the ion current measuring
technique. Especially low engine load deteriorates ion
current signal quality in terms of correspondence to the
in-cylinder pressure.

The approach herein estimates the PPP from the ion
current using a simple curvefitting technique. The
algorithm is fast and requires a small amount of storage
and computation.
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Figure 1. Cycle to cycle variations in PPP (Dash-dotted line). PPP is
calculated from the pressure trace, which has been sampled in a
laboratory environment under constant external conditions. The engine
speed was 2700 RPM and the load was 40% of MBT. The mean PPP
(Solid line) is 20.9 degrees ATDC and the standard deviation is 2.4
degrees.



PRESSURE PEAK POSITION

Optimal spark advance in terms of efficiency maintains
an almost constant combustion phasing no matter what
external disturbances that are present [2]. This can be
accomplished using feedback control, where the result of
the spark setting is continuously measured [1]. The
combustion phasing can be described by e.g. PPP or
MFB50%. In this paper, PPP is chosen. Moreover, the
purpose with the developed ion current based PPP
estimator is to replace the intrusive pressure sensor.

The intrinsic noise in PPP is quite high resulting in a
standard deviation of approximately 2.5 crank angle
degrees during both constant operation and constant
external conditions, Fig. 1. This is due to cycle to cycle
variations of the combustion engine and ambiguities
related to the sometimes flat peak of the pressure trace.
Nevertheless, spark advance control of PPP is quite
robust and cycle to cycle variations result in less than
0.4% loss in net indicated work [3]. Accordingly, an
estimator for PPP might disregard cycle to cycle
variations without deterioration of the control scheme.

ION CURRENT

The ion current is measured in the combustion chamber,
using the sparkplug as sensor. The sensing technique is
to apply a DC bias to the spark plug when it is not used
for ignition and measure the current that flows through
the circuit. This type of ion current measuring is already
used for e.g. knock – and misfire detection in production
cars of today.

The ion current can be divided into three phases: the
ignition phase, were the ion current makes large peaks
and ringing of the electronic measurement device, the
flame-front phase, which typically displays one or
several large maxima, and the post flame phase, where
(sometimes) a maximum corresponding to the position of
the pressure peak is displayed. These phases can be
difficult to discern when examining the ion current from a
single cycle and are therefore often illustrated using ion
currents that have been sampled during constant
external conditions and then averaged over several
consecutive cycles, Fig. 2. In contrast to the “ideal” ion
current signal in Fig. 2, the cycle-to-cycle ion current,
shown in Fig. 3, varies significantly between cycles. It is
unlikely that one encounters an example like the one
illustrated in Fig. 2.

Moreover, when the ion current has been obtained
outside the laboratory, i.e. onboard an “off the shelf”
commercial car, additional external disturbances like
temperature and humidity appear.

−40 −30 −20 −10 0 10 20 30 40 50 60
0

0.5

1

1.5

2

V
ol

ts

Crank Angle

Ion current            
Pressure trace (Scaled)

Figure 2. An “ideal” ion current signature (solid line): The signal has
been sampled in a laboratory environment under constant external
conditions. The engine speed was 1500 RPM and the load was 70% of
MBT. The pressure trace is shown for comparison (dashed line). The
plotted signals are the result of averaging over 100 consecutive cycles

A simple theoretical model, assuming e.g. adiabatic
conditions, says that the ion current peak in the post
flame phase (the rightmost peak in Fig. 2) should
coincide with the pressure peak under high load
conditions [6]. Empirical studies [7], under steady state
conditions in a dynamometer, indicate that this is
approximately true but that the model has difficulties
describing low load phenomena, even if data is collected
under ideal external conditions and then averaged. This
complication is due to the fact that the post flame peak
essentially vanishes if the load is less than 20% MBT2

(see Fig. 3). It is worth mentioning, in this context, that
normal driving on the highway is close to the low load
situation.

In order for an ion current based PPP estimator to be
commercially viable, it must improve performance when
used in feedforward control. Therefore, the PPP
estimates must not be biased or easily corrupted by ion
current signal alterations. Thus, the solution proposed
here utilizes bounds on the ion current signal shape
when searching for PPP.

                                                     
2This approximation is deduced from observations on the
SAAB engine studied in this report.
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Figure 3. An ion current signal sampled during a single cycle on board
the SAAB car while driving on the highway (solid line). The engine
speed was 1500 RPM and the load was approximately 25% of MBT.
There are several wide peaks in the signal and the post flame phase is
not visible. The pressure trace is shown for comparison (dashed line).

PEAK-FINDING ALGORITHM

The approach in this paper operates on single cycle ion
currents and relies on the assumption of high correlation
between the post flame phase peak of the ion current
and the PPP. Thus, it is assumed that the flame front
phase is detectable using simple signal processing.

THE IDEA

The idea is to successively fit a second order polynomial
to locally describe the ion current signal as a function of
crank angle. From the local model, the second derivative
is calculated which gives information about how the
slope is changing. If the second derivative is negative
(positive) the model has a maximum  (minimum). By
scanning from the largest to smaller crank angles and
comparing the second derivatives of the fitted local
models, the local maximum of the ion current that
corresponds to PPP can be found. Since there are other
local maxima from the flame front phase the scanning of
local models should be able to detect the end of the
flame front phase and stop the scanning. This is done by
giving a threshold for the maximum allowed second
derivative. When passing this threshold, the end of the
flame front is considered found, see Fig.4.

The remaining ion current signal corresponding to higher
crank angles then belongs to the post flame phase. The
local model having the smallest second derivative is then
chosen and used for calculation of the PPP estimate.
The PPP estimate is chosen as the crank angle where
the first derivative is zero. This now corresponds to the
sharpest maximum in the post flame phase, see Fig. 4a.
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Figure 4. Estimations using the peak-finding algorithm. PPP
corresponds to the pressure peak position obtained from the pressure
trace and 

∧
PPP corresponds to the estimate. a Local maximum is

detected within the sliding window. b The local maximum is outside
the sliding window. The estimate is constrained to the closest boundary
(of solid curve). c No local maximum. Mid-point (in sliding window) of
smallest second derivative is taken as estimate.



If the calculated maximum of the model is outside its
range of validity, the closest point inside the sliding
window (fitted range of the local model) is chosen
instead, see Fig.4b. Sometimes it may happen that the
smallest second derivative is positive. The local model
then has no maximum. The mid-point of the sliding
window is chosen in this case, see Fig.4c.

THE ALGORITHM

Let the ion current signal be )(θi where θ  is the crank
angle. The local second order model is:

2
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where kp , k = 0,1,2 are model parameters to be
estimated as below. The local model should approximate
the ion current signal over a sliding window(explained
below), i.e. find kp  such that )()( θθ if ≈ , where the

sliding window is [ ]nθθθθ ,...., 21∈ . Since there are three

unknown parameters ( kp , k = 0,1,2) it is necessary to

have a sliding window of at least three crank angle
degrees. But, in order to reduce noise effects n=5 is
chosen. The model fit is thus made in the least squares
sense.
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This is a linear least square problem with analytical
solution. From the model, the second derivative is
calculated as
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When 2p is above a chosen threshold, the flame front
end is considered found. The model with the smallest

2p  is then considered. For this model, the local

maximum is found where the first derivative is zero, i.e.
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Finally, the estimate is constrained to be inside the
validity range of the estimated local model.
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The sliding window has a low pass filtering effect and
thus removes noise effects. This makes the algorithm
robust towards outliers not related to the pressure peak.

DATA

Data was collected on a car during normal operation on
the highway. The experimental car is a production 1996
SAAB 9000, with a 2.3-liter low-pressure turbo engine
(B234E MY96). Besides standard equipment, the car
has been equipped with Kistler 6121 pressure sensors.

The complete data set consists of 99000 cycles obtained
in cylinder 1, from which 3 batches have been selected
as test data, see Fig.5, 6 and 7.

EXPERIMENT

The peak-finding algorithm presented in this paper is
evaluated on three batches of real data describing
different steps in PPP. Regarding estimator quality, bias
is the primary variable of interest. A feedback controller
will not be able to eliminate steady state errors if the
sensor signal is biased. In order to clearly display bias
errors, the PPP estimates and the PPP itself are low
pass filtered in the figures in this section. This will
impose approximately the same signal behavior as seen
by a closed loop control system as far as bias is
concerned. Furthermore, the results of the peak-finding
algorithm are compared to those produced by: 1. The
Gaussian fit model presented in [3]. 2. The MLP model
presented in [4]. Accordingly, the estimates of the latter
algorithms are also low pass filtered.

THE MLP MODEL

Being a parameterized model estimated from data, the
MLP (Multilayer Perceptron) is sensitive to signal levels
and input data dimension. Hence, a suitable
preprocessing of data is needed in order to improve both
estimation time and model performance. Since the
algorithm requires a small amount of computation, it is
very fast. However, the drawback of the algorithm is the
storage needed for the parameters of the model and the
preprocessing stage corresponding to approximately 1
kilobyte. For further reading see [4].

THE GAUSSIAN FIT ALGORITHM

The Gaussian fit algorithm suggested by Eriksson and
Nielsen is described in some detail in e.g. [3]. The key
idea in the algorithm is that the ion current can be
modeled by a sum of Gaussians.

The algorithm used here is based on three Gaussians in
the model function. Eriksson suggests using two [3], but
our experience is that three tends to work better. We
used a second order Levenberg-Marquardt algorithm for
the iterative search and tried 50 different initial
conditions for the parameters (the result turned out to be
quite sensitive to the initial conditions). The best fit of
these 50 was used for the PPP estimate. The Gaussian
fit algorithm requires no significant storage but the
computations needed to produce good estimates are
large. Thus, a real-time implementation that works not



only during high load might be difficult to achieve. For
further reading see [3].

RESULTS

The first batch, Fig. 5, is a step in PPP from
approximately 20 degrees ATDC to 10 degrees ATDC.
The true PPP is obtained from the pressure trace and
then filtered.
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Figure 5. Step in low pass filtered PPP (solid-thick) from approximately
20 degrees ATDC to 10 degrees ATDC. Also shown are the
corresponding filtered estimations using the peak-finding algorithm
(solid-thin), MLP (dashed-thin) and Gaussian curve fit (dashed-thick).
The load is approximately 35% of MBT on average.

The peak-finding algorithm shows close correspondence
to the filtered PPP, except for the last 100 cycles. The
MLP has problems finding PPPs below 10 degrees
ATDC and is thus biased in those regions.

The second batch is a long ramp in PPP from
approximately 10 degrees ATDC to 20 degrees ATDC.
The peak-finding algorithm performs well giving
unbiased estimations on average. Once more, the MLP
has problems in the end regions, showing a significant
bias for PPPs later than 18 degrees ATDC. The
Gaussian fit algorithm does not perform well and is
underestimating the PPP continuously, indicating a
significant bias.
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Figure 6. Ramp in low pass filtered PPP (solid-thick) from
approximately 10 degrees ATDC to 20 degrees ATDC. Also shown are
the corresponding filtered estimations using the peak-finding algorithm
(solid-thin), MLP (dashed-thin) and Gaussian curve fit (dashed-thick).
The load is approximately 20% of MBT on average.

The last batch is a close up, illustrating the performance
of the algorithms for an oscillating PPP at low load.
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Figure 7. Close up of low pass filtered PPP (solid-thick) and
corresponding filtered estimations using the peak-finding algorithm
(solid-thin), MLP (dashed-thin) and Gaussian curve fit (dashed-thick).
The load is approximately 10% of MBT on average.



From the three figures shown here, it is obvious that the
MLP has a more narrow range than its competitors.
Thus, it has problems estimating small and large PPPs.
Furthermore, the Gaussian fit algorithm has, on average,
a bias of a few degrees. Moreover, its estimates clearly
deteriorate when engine load is low.

CONCLUSION

A new ion-current based algorithm for on-line estimation
of the in-cylinder pressure peak position of spark ignited
engines is proposed. The algorithm is based on a simple
peak-finding technique utilizing simple least squares fit.
Furthermore, the algorithm is confident in the sense that
it quantifies the shape of the ion current using a
curvature measurement. The peak-finding algorithm
outperforms the state of the art models considered here.
In particular, the ability of providing unbiased estimates
in the most important PPP range is a significant feature.
Additionally, robustness towards the low load scenario is
demonstrated. Thus, the peak-finding algorithm is the
best candidate for PPP feedback to an online controller.
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DEFINITIONS, ACRONYMS, ABBREVIATIONS

MBT:
Maximum Brake Torque

PPP:
Pressure Peak Position

TDC:
Top Dead Center

ATDC:
After Top Dead Center

MFB50%:
Mass Fraction Burned equals 50%


